Code: EM3T6, EE3T4

II B. Tech - I Semester - Regular Examinations - January 2014

SWITCHING THEORY AND LOGIC DESIGN (Common for ECM, EEE)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- a) The message below was coded using Hamming code and transmitted through a noisy channel. Decode the message assuming that a single error has occurred in each code word 1001001011100111101100011011.
 8 M
 - b) Perform the following operations.
 - i) 1100.010 1000.111
 - ii) 87-999 using 2's arithmetic.

6 M

- 2. a) Reduce the following Boolean expressions to the four literals.
 - i) (A'+C)(A'+C')(A+B+CD)
 - ii) ABCD+ A' BD+AB C' D+ A' D

8 M

b) Realize an 2 input EX-OR gate using minimum number of 2 input NAND gates.

6 M

3. a) Minimize the given 5 variable function using QM Tabular method

$$f = \sum (2, 4, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31).$$
 8 M

- b) What do you mean by K-Map? What are its advantages and disadvantages?
- 4. a) Design a 5 to 32 line decoder using 3 to 8 line decode, active low outputs with 2 active low and one active high enable.

 7 M
 - b) Use a multiplexer having three data select inputs to implement the logic for the function $F = \sum m(0,1,2,3,4,10,11,14,15)$. 7 M
- 5. a) Obtain the switching function realized by the given gate method. 7 M
 - b) Explain the difference between PLA and PAL. 7 M
- 6. a) Design and implement a BCD counter using JK flip flops.

 State if it is self starting.

 7 M
 - b) Design a 3 stage shift register which is an universal register.

 7 M

- 7. a) Design a sequence detector with overlapping, the sequence is 10101. Use SR flip flops in the design. 6 M
 - b) Reduce the number of states in the following state table and tabulate the reduced state table.

 8 M

PS	NSIZ	
	x=0	x=1
A	D, 0	H, 1
\mathbf{B}	F, 1	C, 1
C	D, 0	F, 1
D	C, 0	E, 1
E	C, 1	D, 1
\mathbf{F}	D, 1	D, 1
G	D, 1	C, 1
H	B, 1	A, 1

8. a) Write a brief note on Hazards and races.

- 7 M
- b) Write a brief note on Hazard free realization.
- 7 M